Bandwidth choice for robust nonparametric scale function estimation

نویسندگان

  • Graciela Boente
  • Marcelo Ruiz
  • Ruben H. Zamar
چکیده

Some key words: Cross–validation; Data–driven bandwidth; Heteroscedasticity; Local M−estimators; Nonparametric regression; Robust estimation. Corresponding Author Graciela Boente Instituto de Cálculo Facultad de Ciencias Exactas y Naturales Ciudad Universitaria, Pabellón 2 Buenos Aires, C1428EHA Argentina email: [email protected] fax 54-11-45763375 Running Head: Robust scale estimation. ∗This research was partially supported by Grants X-018 from the Universidad de Buenos Aires, pip 0216 from conicet and pict 00821 from anpcyt, Argentina and Discovery Grant of the Natural Sciences and Engineering Research Council of Canada.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Penalizing function based bandwidth choice in nonparametric quantile regression

Abstract: In nonparametric mean regression various methods for bandwidth choice exist. These methods can roughly be divided into plug-in methods and methods based on penalizing functions. This paper uses the approach based on penalizing functions and adapt it to nonparametric quantile regression estimation, where bandwidth choice is still an unsolved problem. Various criteria for bandwitdth cho...

متن کامل

Variable data driven bandwidth choice in nonparametric quantile regression

The choice of a smoothing parameter or bandwidth is crucial when applying nonparametric regression estimators. In nonparametric mean regression various methods for bandwidth selection exists. But in nonparametric quantile regression bandwidth choice is still an unsolved problem. In this paper a selection procedure for local varying bandwidths based on the asymptotic mean squared error (MSE) of ...

متن کامل

Performance of Bandwidth Selection Rules for the Local Linear Regression

The choice of bandwidth is crucial in the nonparametric estimation procedure. A number of methods to choose the associated bandwidth have been developed. In this paper we studied three existing bandwidth selectors for local linear regression with different design matrix characteristics. The performances illustrate that although there is no uniformly dominating rule, the variable bandwidth selec...

متن کامل

Nonparametric functional central limit theorem for time series regression with application to self-normalized confidence interval

This paper is concerned with the inference of nonparametric mean function in a time series context. The commonly used kernel smoothing estimate is asymptotically normal and the traditional inference procedure then consistently estimates the asymptotic variance function and relies upon normal approximation. Consistent estimation of the asymptotic variance function involves another level of nonpa...

متن کامل

Density Estimation of Censored Data with Infinite-Order Kernels

Higher-order accurate density estimation under random right censorship is achieved using kernel estimators from a family of infinite-order kernels. A compatible bandwidth selection procedure is also proposed that automatically adapts to level of smoothness of the underlying lifetime density. The combination of infinite-order kernels with the new bandwidth selection procedure produces a consider...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2012